H(t)=-16t^2+48t+28

Simple and best practice solution for H(t)=-16t^2+48t+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+48t+28 equation:



(H)=-16H^2+48H+28
We move all terms to the left:
(H)-(-16H^2+48H+28)=0
We get rid of parentheses
16H^2-48H+H-28=0
We add all the numbers together, and all the variables
16H^2-47H-28=0
a = 16; b = -47; c = -28;
Δ = b2-4ac
Δ = -472-4·16·(-28)
Δ = 4001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-\sqrt{4001}}{2*16}=\frac{47-\sqrt{4001}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+\sqrt{4001}}{2*16}=\frac{47+\sqrt{4001}}{32} $

See similar equations:

| -4(x+2)+8x=0 | | -36=-6(2-8n) | | 0=2p+9p | | 3x-5=2x-2x+6 | | 9.6=x/9 | | -5(x+10)=-20 | | 9n^2+5=86 | | 10x+8-4x=26 | | 1=x-13÷32 | | 2(j-4)=19 | | 5h=3.5 | | x+x-23=55 | | 20=t+15= | | (n-35)÷7=70 | | 4=f-5= | | 12x-3=60 | | −4+p2=−9 | | 3x+4.5=3/x | | -14+(3a+6)=12(6-4a)+12 | | -3(2x-9)+3x=7(x+6) | | z/16=8z= | | 66=4u+10 | | 51/2c=6 | | 3(b+5)=2(b-6) | | (10/3)=(17/17-x)) | | 2.8k-11=40 | | 91/3=12/3f | | -9=-11+2/b | | 5y+34=-2(-6y+1) | | -7(-3v+5)-6v=5(v-5)-5 | | t-57/6=4 | | Y=-0.33x^2-12x |

Equations solver categories